Roll No.		Total No. of Pages : 02
Total No.	of Questions : 09	
	M.Sc. (Mathematics) (Sem.–2 ALGEBRA-I Subject Code : MSM-101-22	2)
M.Code : 92796		
	Date of Examination : 14-01-23	3
Time : 3	Hrs.	Max. Marks : 60
INSTRUC	TIONS TO CANDIDATES :	
 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each. 		
 SECTION - B & C. have FOUR questions each. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each. Select atleast TWO questions from SECTION - B & C. 		
	SECTION-A	Q.
1. Write short notes on :		
a)	Prove that a group of prime order is abelian.	
b)	Show that the only abelian simple groups are group	os of prime order.
c)	Suppose a \mathcal{D} has only two conjugates in G subgroup of \mathcal{G}	then show that N(a) is a normal
d)	State Fundamental Theorem of finite abelian group) S.
e)	Show that there are at most three groups of order 2	1.
f)	State Sylow's third theorem.	
g)	Let G be a group of order 12. Show that either $G \cong A_4$.	er Sylow 3-subgroup is normal or
h)	Find all the composition series of Z_{30} and show the	ey are equivalent.

- i) Prove that a division ring is a simple ring.
- j) Let < Z, +, . > be the ring of integers. Then E = set of even integers is an ideal of Z.

1 | M-92796

(S1)-2398

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

- 2. a) Let G be a finite group such that every non-identity element of G has same order n. Show that n is prime.
 - b) If a cyclic subgroup K of G is normal in G, then show that every subgroup of K is normal in G.
- 3. a) Prove that a homomorphism $f: G \bigvee G^{\uparrow}$ is one-one iff K erf = {e}.
 - b) Prove that any finite cyclic group of order n is isomorphic to Z_n the group of integers addition modulo n.
- 4. a) Prove that an abelian group G has a composition series iff G is finite.
 - b) Prove that every cyclic group is solvable.
- 5. a) Show that a finite *p*-group is solvable, where p is prime.
 - b) Prove that any finite group G (with at least two elements) has a maximal normal subgroup.

SECTION-C

6. a) Let H, K be two distinct maximal normal subgroups of G, then show that G = HK and $H \neq K$ is a maximal normal subgroup of H as well as K.

b) Show that a sylow p-subgroups of G are isomorphic.

- 7. State and prove Sylow's first theorem.
- 8. a) Let R be an integral domain with unity such that R has finite number of ideals. Show that R is a field.
 - b) Let $f: R \checkmark R'$ be a ring homomorphism, then show that K erf is an ideal of ring R.
- 9. Let *R* be a commutative ring with unity, then show that an ideal *M* of *R* is maximal ideal of *R* iff $\frac{R}{M}$ is a field.
- NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

2 | M-92796

(S1)-2398

Download all NOTES and PAPERS at StudentSuvidha.com